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The study is focused on applying uncertainty and sensitivity analysis to support the application and evaluation of
large exposure models where a significant number of parameters and complex exposure scenarios might be in-
volved. The recently developed MERLIN-Expo exposure modelling tool was applied to probabilistically assess the
ecological and human exposure to PCB 126 and 2,3,7,8-TCDD in the Venice lagoon (Italy). The ‘Phytoplankton’,
‘Aquatic Invertebrate’, ‘Fish’, ‘Human intake’ and PBPK models available in MERLIN-Expo library were integrated
to create a specific food web to dynamically simulate bioaccumulation in various aquatic species and in the
human body over individual lifetimes from 1932 until 1998. MERLIN-Expo is a high tier exposure modelling
tool allowing propagation of uncertainty on the model predictions through Monte Carlo simulation. Uncertainty
in model output can be further apportioned between parameters by applying built-in sensitivity analysis tools. In
this study, uncertainty has been extensively addressed in the distribution functions to describe the data input and
the effect on model results by applying sensitivity analysis techniques (screening Morris method, regression
analysis, and variance-based method EFAST). In the exposure scenario developed for the Lagoon of Venice, the
concentrations of 2,3,7,8-TCDD and PCB 126 in human blood turned out to be mainly influenced by a combination
of parameters (half-lives of the chemicals, body weight variability, lipid fraction, food assimilation efficiency),
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physiological processes (uptake/elimination rates), environmental exposure concentrations (sediment, water,
food) and eating behaviours (amount of food eaten). In conclusion, this case study demonstrated feasibility of
MERLIN-Expo to be successfully employed in integrated, high tier exposure assessment.

1. Introduction

The need for advancement in risk assessment by improving expo-
sure assessment with innovative approaches has been recently
recognised by three independent EC Scientific Committees. The Scientif-
ic Committee on Consumer Safety (SCCS), the Scientific Committee on
Health and Environmental Risk (SCHER), and the Scientific Committee
on Emerging and Newly Identified Risks (SCENIHR) have provided
European Commission with scientific advice regarding consumer safety,
public health, and environment policy making (European Commission
and Directorate General for Health & Consumers, 2013a, 2013b). The
Committees’ opinion addresses new challenges in environmental and
human risk assessment, such as development of realistic scenarios to
predict temporal and spatial variations, incorporation of specific organ-
ism parameters, and food web path of chemicals, and application of
physiologically-based pharmacokinetic (PBPK) modelling to refine ex-
posure assessment. In addition, it has been underlined that the quanti-
fication of exposure should be conducted based on an integrated
(coupled) external and internal dynamic exposure modelling helping
to address more complex exposure situations (Science for Environment
Policy, 2015).

Ecological and human exposure assessment is a process of estimat-
ing magnitude, frequency and duration of individual or population ex-
posure to an agent (Jdrup et al., 2001). The assessment process
consists of three elements: scenario, model, and parameters. An expo-
sure scenario as defined by WHO is a combination of facts and assump-
tions that define a discrete situation where potential exposure may
occur. Conceptual and mathematical representation of exposure pro-
cesses for a given exposure scenario are described by the exposure
model, and parameters which, in general, can refer to input to the expo-
sure model (Bundesinstitut fiir Risikobewertung, 2015). WHO/IPCS
Guideline on uncertainty in the exposure assessment distinguishes
these three elements as sources of uncertainty: exposure scenario un-
certainty, model uncertainty, and parameters (IPCS/WHO, 2008). Un-
certainty in exposure scenario arises from the identification of the
sources of chemicals, routes of exposure, target organism/population,
geographical location, frequency and duration of exposure. Other au-
thors (Linkov & Burmistrov, 2003) propose an additional source of un-
certainty originating from subjective treatment of the exposure
problem, which can be seen as an extra dimension in scenario uncer-
tainty. Uncertainties in a model reflect gaps in scientific knowledge
and can be attributed to modelling errors, for instance the exclusion of
some parameters, or relation errors due to incorrect conclusions from
correlations. Imperfections in numerical values used to determine expo-
sure factors can be associated with measurement errors, sample uncer-
tainty, type of data (e.g., default values, measurement data), and
uncertainty in the statistical distributions.

A clear understanding of the aforementioned uncertainties in expo-
sure assessment is needed to aid decision makers in judging how prob-
able it is that risks will be overestimated or underestimated for every
member of the exposed population in order to balance costs and bene-
fits of risk mitigation (NRC, 1994). Disregarding uncertainty may lead to
incomplete risk assessments, poor decision-making and poor risk com-
munication, therefore the following aspects need to be taken into ac-
count: (i) clear separation between uncertainty and variability, (ii)
clarification of which uncertainties and variabilities are included in the
assessment, and (iii) application of statistical tools, such as uncertainty
and sensitivity analysis, for a quantitative assessment of uncertainty to
characterize the confidence bounds in a model output (Ozkaynak

© 2016 Elsevier B.V. All rights reserved.

et al, 2008). Application of sensitivity analysis to exposure assessment
can help in identifying factors or groups of factors responsible for the
uncertainty in the prediction.

Uncertainty in estimating bioaccumulation of organic contaminants
by higher trophic level organisms including man represents a significant
contribution to the overall uncertainty in chemical risk assessment (Von
Stackelberg et al., 2002). Understanding variability and uncertainty in
environmental, physicochemical, and physiological model input factors
is pivotal in estimating uncertainty in exposure assessment. Additional-
ly, exposed individuals may have different behavioural patterns and
physiological characteristics, which change depending on where and
when exposure event occurs. These differences accounts for inter- and
intra-variability in exposure levels of individuals. Thus application of
uncertainty and sensitivity analysis can help to account for the uncer-
tain factors, increasing credibility in risk analysis by providing assess-
ment of the output uncertainty and relationship between the
uncertain input parameters and output.

Publicly open list of current environmental and human exposure
models, databases and reference materials has been made recently ac-
cessible through searchable US EPA-Expo-Box, a toolbox aiding individ-
uals in selecting resources needed for exposure assessment (http://
www.epa.gov/expobox). Indeed, various exposure models are readily
available, however no tool offers comprehensive, high tier approach to
chemical fate modelling and biota/human exposure assessment that in-
cludes also advanced functionalities for uncertainty and sensitivity anal-
ysis (Ciffroy et al., 2015), in line with the proposed approach by IPCS/
WHO (2008).

Recently, a new tool for environmental and human exposure assess-
ment has been proposed in the framework of the EU FP7 project ‘4FUN’
(http://merlin-expo.eu/). Based on an extended library of environmen-
tal, biota and human exposure models, it incorporates several function-
alities for performing probabilistic simulations as well as for tiered
sensitivity analysis. MERLIN-Expo tool was demonstrated to carry out
integrated exposure assessment on a real life case study, using coupled
ecological and human exposure models to dynamically simulate histor-
ical exposure to environmental contaminants, followed by quantitative
uncertainty and sensitivity analysis. The deterministic exposure assess-
ment was described in Giubilato et al. (2016), where the case study con-
text, the conceptual framework and the available data were presented
in detail. The main objective of the present work was to characterize
and quantify uncertainty in a chain of exposure models through proba-
bilistic assessment of ecological and human exposure to two environ-
mental persistent contaminants, 2,3,7,8-TCDD and PCB 126, in the
Lagoon of Venice (Italy). The subsequent step was to identify sensitive
environmental (e.g., fraction of organic carbon in sediments), physio-
logical (e.g., assimilation efficiencies, age, weight), ecological (e.g., diet
preferences), and PBPK parameters, supported by the evaluation of
their impact on the magnitude of uncertainty of modelled outputs.

We demonstrated MERLIN-Expo tool and its uncertainty/variability
analysis, and sensitivity analysis functionalities in order to provide con-
fidence in the model structure and predictions, and also to improve our
understanding about bioaccumulation phenomena along the complex
food webs including exposure of a man as a final receptor. Large expo-
sure models require numerous input factors, therefore, it is important
to know which contribute mostly to model output uncertainty. Exercis-
ing sensitivity analysis can be beneficial to exposure modellers with re-
gard to scaling down initial number of model factors to the most
influential ones and upgrading their quality by additional research.
This study is aimed at gaining insight into contaminant transport
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phenomena in food webs including human receptors, with the final ob-
jective of identifying possible further improvements of the proposed
modelling framework.

2. Materials and methods
2.1. Case study

The Lagoon of Venice bears characteristics of a coastal, and transi-
tional ecosystem, supporting many human activities such as tourism
or fishery. However, its environmental quality has been affected over
many years by a densely populated catchment area, industrial settlings,
oil refining plants, wastewaters and waste incineration plants. The pol-
lution sources have been affecting various environmental compart-
ments, through the release of a range of important environmental
contaminants to the lagoon including organic (e.g. PCBs, dioxin-like
PCBs, PCDD/Fs, PAHs) and inorganic (e.g. Cd, Pb, As, Cr, Zn, Ni) chemicals
(Micheletti et al., 2007, 2008). Persistent organic pollutants tend to ac-
cumulate and magnify in aquatic organisms, causing a potential signifi-
cant long term human dietary exposure (Von Stackelberg et al., 2002).

The exposure modelling exercise was performed on bioaccumula-
tion aquatic food web and PBPK models targeting two persistent organic
contaminants, namely 2,3,7,8-TCDD and PCB 126. Exposure to these
compounds among the general human population involves continuous-
ly low-level exposures predominantly through gastrointestinal absorp-
tion via diet (Diliberto et al., 2001), hence they are important
environmental contaminants potentially leading to adverse ecological
and human effects.

The exposure scenario and model input factors were defined as char-
acteristic for the Lagoon of Venice to reflect real exposure conditions for
both ecological and human targets. The considered aquatic food web
has been specifically defined to capture the characteristics of local
aquatic ecosystem and it is described in Giubilato et al. (2016), where
a more detailed description of the case study is also provided.

In the presented study, five models from MERLIN-Expo library were
used, i.e. models simulating the fate of chemicals in Phytoplankton, In-
vertebrates, Fish, Human intake and Man. These models are briefly de-
scribed in the following paragraph.

3. Description of the models and models’ coupling
Conceptual models for ‘Fish’, ‘Invertebrate’ and ‘Phytoplankton’,

shown in Fig. 1, are based on ‘Optimal Modeling for EcotoxicoloGical
Applications’ (OMEGA) modelling approach proposed by Hendriks

and colleagues (Hendriks et al., 2001; Hendriks and Heikens, 2001).
Mass balance equations describing accumulation of organic chemicals
in aquatic species are given by Eq. S1-53 in SL

The ‘Fish’ and ‘Invertebrate’ models include two media that corre-
spond to two input/output pathways for chemical accumulation in
fresh weight (fw) whole organism, i.e. the respiratory system and the
gastro intestinal tract (GIT) system, while the ‘Phytoplankton’ model
is represented by single compartment. The considered media and pro-
cesses are represented in Fig. 1. The uptake of chemicals by aquatic in-
vertebrates and fish species is based on allometric scaling and
assumption that physicochemical properties of respiratory surfaces
(e.g., gills, cell membrane) are essential for uptake of chemicals (Flynn
and Yalkowsky, 1972; Gobas et al., 1986). Dietary uptake is considered
to be the same for invertebrates and fishes. It is assumed that chemical
exchanges across the GIT are driven by diffusion gradients, i.e. the con-
centration differences between phases within the organism and its
food/feces (Fisk et al,, 1998). Dietary uptake is driven also by ecological
factors such as animal's trophic level and diet composition. Specific diet
preferences were assigned to each animal reflecting its position and in-
teractions with other animals in the food web (Micheletti et al., 2008).
Loss of chemicals is described by elimination kinetics excretion, eges-
tion, growth and metabolism being an important factor affecting
chemicals that entered animals' body (Papa et al,, 2014). A detailed de-
scription of the models can be found in dedicated documentation avail-
able on MERLIN-Expo website (http://merlin-expo.eu/learn/
documentation/model-documentation/).

The ‘Human intake’ model consists of several equations for calculat-
ing the total human daily intake of target chemicals through different
exposure pathways. For the case at hand, the model was applied to es-
timate the total daily ingested quantity from different food items
(only dietary exposure is considered). The amount of consumed con-
taminated seafood is derived from age-dependent dietary data and is
expressed as ingestion rate for each food item (kgg,/d).

The ‘Man’ model is a PBPK model, applied to predict time-dependent
concentrations of 2,3,7,8-TCDD and PCB126 in the blood of individual
human males. The tissues and organs are represented by one compart-
ment in which the compound is rapidly and homogeneously distributed
and the distribution is flow-limited (Beaudouin et al., 2010). Each organ
or tissue can receive different doses of the compound and the com-
pound can remain in the organs or tissues for a varying amount of
time. The compound can move from the plasma to the tissue until the
equilibrium is established. The distribution in the tissues or organs de-
pends on factors related to the physiology of the individual
(e.g., vascular permeability, regional blood flow, cardiac output and
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perfusion rate of the tissue) and factors related to the compound
(e.g., molecular size, lipid solubility, pKa, affinity to bind tissue and plas-
ma proteins) (Brochot et al., 2007). The blood is represented in the
model by two compartments: the arterial and venous blood. The arterial
blood is distributed into all tissue compartments and the venous blood
collects blood at the exit of most of the tissue compartments. Mass bal-
ance equations for calculating concentration in blood are described by
Eq. 54 and S5 in SL

Finally, to recreate the required exposure scenario, all the models
can be coupled in a model chain in MERLIN-Expo, by defining
output(s) of one model as input(s) to another one. This can be done
using Graph or Matrix design. Here we built model chain using the ma-
trix feature, where models selected from the software library are pic-
tured as boxes placed on matrix diagonal and connected by off-
diagonal ‘Connectors’ (Fig. 2). The ‘River measurement’ module is
used to input data on chemical concentration in dissolved water, con-
centration in sediments and water temperature. The ‘Connectors’
(grey arrows) are used to feed this information to ‘Phytoplankton’, ‘In-
vertebrates’, and ‘Fish’ models. All aquatic organisms included in the
Venice lagoon food web are grouped into these three categories and
linked by concentration of accumulated contaminant and lipid content
in their diet through input/output system. Chemicals accumulated in
seafood are transferred to the top consumer, i.e. human population, de-
scribed by the ‘Man’ model, through the intermediate model ‘Human in-
take’, responsible for calculating age-dependent chemical daily intakes.

A. Radomyski et al. / Science of the Total Environment 569-570 (2016) 1635-1649

3.1. Uncertainty analysis and parameter selection

In addition to deterministic assessment, MERLIN-Expo enables an
assessor to include uncertainty on input parameters by specifying prob-
abilistic distribution functions (PDFs) for parameter values. For probabi-
listic analysis, parameters that have been assigned PDFs were selected.
5000 probabilistic simulations of the full model chain were run using
Monte Carlo sampling scheme for the period of 24,091 days at 100-
day time step. As a human target, a high-fish consumer individual (see
Giubilato et al,, 2016) born in 1932 was selected, so the time period rep-
resents 66 years of this individual's lifetime. Environmental and bio-
monitoring measurement data are available for year 1998, hence it
was considered as a final time in all modelling exercises. Considering
the five MERLIN-Expo models selected and coupled for this case study,
in total 156 parameters were included in the probabilistic assessment.

3.1.1. Aquatic food web

Two invertebrate species, Tapes philippinarum (Manila clam),
Carcinus mediterraneus (green crab), and two fishes, Chelon labrosus
(mullet), and Zosterisessor ophiocephalus (goby), were included in the
probabilistic assessment of time-varying whole body internal
concertation of 2,3,7,8-TCDD and PCB126 over the period 1932-1998.

The uncertain input parameters used to estimate accumulated con-
taminant concentration in aquatic biota are represented as probability
distributions based on literature review or analysis of available datasets
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water water
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temperature sediments
Water
temperature
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phytoplankton

Lipid content
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water
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Water
temperature
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Fig. 2. Models chained on diagonal of the matrix, and connectors allowing flow of information between the models.
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(e.g., phytoplankton lipid content and cell volume) (Hauck et al., 2007,
2011; Hendriks, 1999, 2007; Olenina et al., 2006; Seth et al., 1999). Pa-
rameters representing generic trophic levels (fish, invertebrates, and
phytoplankton) were probabilistically estimated, providing uncertainty
in calibration data, by Hauck et al. (2011), by comparing observed and
estimated rate constants for physiological and chemical uptake and
elimination. Parameters were originally grouped into three categories
reflecting different approaches to their estimation. The first group in-
cludes independent parameters whose values can be determined inde-
pendently from transport coefficients and partial resistances. These
parameters are: lipid fraction of organism and its food, fraction of food
assimilated, and allometric rate exponent. However, we used organism
specific data to parameterize the lagoon food web (Excel file provided as
SI). The second group was defined as transport coefficients and consists
of transport of water through the organism, transport of food through
an organism, and the production of biomass — their values were estimat-
ed from allometric data. The third group of parameters include partial
resistances, which were derived by comparing the measured and esti-
mated chemical rate constants and minimizing the differences by max-
imum likelihood estimation (Hauck et al., 2011; Hendriks, 2007).
Contaminant-specific parameter values were derived using QSAR
models implemented in EPI Suite software (US EPA, 2012): metabolic
half-life of chemicals for organics (Arnot et al, 2008, 2009),
bioconcentration factor for organics (Arnot and Gobas, 2003, 2006),
water-organic carbon partition coefficient (Schiilirmann et al., 2007),
and octanol/water partition coefficient (Meylan and Howard, 1995).
PDFs were estimated based on the primary source where the given
QSAR was developed. Assuming identical, independent and normally
distributed errors, the uncertainty in a QSAR prediction (X,) was de-

duced from reported predicted mean (X;), standard error of prediction
(SE(X,)), and estimated student t-distribution based on reported num-
ber of data in a training set n and a number of descriptors k used origi-
nally in QSAR development (t,_j_,). Described method is given by
Eq. 1:

Xp ~Xp 1ty % SE(X) (1)

Probabilistic parameterization of the models is described in details in
MERLIN-Expo documentation available on the dedicated website
(http://merlin-expo.eu/learn/documentation/model-documentation/).

3.1.2. Human intake and PBPK

The ‘Human intake’ model is used to calculate the total ingested
quantity of contaminants from contaminated food, i.e., ‘Ingestion rate
for food'. It is a step function of age used to assign different rates for dif-
ferent age groups as ‘Age group ingestion rate for food’ time series.
MERLIN-Expo does not allow to assign uncertainty to time-dependent
inputs such as age-dependent quantity of ingested food, therefore the
‘Human Intake’ model was not included in the uncertainty assessment.

As for the ‘Man' model, body weight and tissue-blood partition coef-
ficients have been included in uncertainty analysis. Individual's
bodyweight is calculated as a function of age to allow inter-individual
bodyweight variability among same aged persons. Body weight is nor-
mally distributed, described by mean and standard deviation
(Beaudouin et al., 2010).

A tissue:blood partition coefficient is defined as the equilibrium fac-
tor represented by ratio of the concentration in a tissue to the concen-
tration in blood. The partition coefficient is a normally distributed
variable with mean and standard deviation. Statistics were obtained
from reported values in Plowchalk et al. (1992); Shin et al. (2009);
Bjorkman et al. (1996); Ishizaki et al. (1991); Bjorkman et al., 1990,
1994; Csanady et al. (2002); Gearhart et al. (1993). Several normal
probability distribution functions have been parameterised for different
tissues (Excel file provided as Sl), separately for 2,3,7,8-TCDD and
PCB126.

3.2. Sensitivity analysis experiment design

MERLIN-Expo allows to select among several tools to perform sensi-
tivity analysis, including local sensitivity analysis methods, screening
methods based on optimized experimental designs, global regression
methods, global variance-based methods.

Sensitivity analysis is the study of how the variation in the output of
a model (numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation. Sensitivity analysis
highlights the inputs that have the greatest influence on the results of
a model, therefore, it provides useful insights for model builders and
users. Insights from sensitivity analysis can be used for:
(i) identification of key sources of uncertainty, (ii) identification of key
controllable sources of variability, and (iii) model refinement, verifica-
tion, and validation.

SA methods available in MERLIN-Expo were organised in a stepwise
structured approach, by starting from computationally ‘inexpensive’
Morris method to most costly variance-based methods. Since higher-
tier methods are targeted on those uncertainties that have most influ-
ence on the assessment outcome, one can use the screening step (Mor-
ris method) to narrow number of input factors to those that are most
influential, so that time needed to run final step (e.g., FAST, EFAST, and
Sobol methods) can be shortened. The Morris screening method follow-
ed by regression based method and EFAST were applied in order to first
reduce the number of parameters and then produce three sensitivity
measures standardised regression coefficient (3;, first order sensitivity
and total order sensitivity indices (S; and TS;).

3.2.1. The Morris screening method

Only a summary of the Morris method is presented in this para-
graph, the complete description can be found in Morris (1991). The
Morris method is a one-factor-at-a-time (OAT) method where the im-
pact of changing the values of each factor (input parameter) is evaluated
one by one in each run. It is a qualitative method providing a ranking of
input parameters in order of importance but not a decomposition of the
output variance. The Morris method is categorized as a global sensitivity
analysis because the method covers the entire ranges over which the
factors may vary. In the method based on OAT, each input factor may as-
sume a discrete number of values which are selected within the factor's
range of variation, and only one input parameter (x;) is modified by a
fixed factor. Each parameter uncertainty interval is first divided into p
equally large layers, due to generating a hyperspace Q, identified by a
n-dimensional p-level grid, where n is the number of parameters. In
the Morris method uncertain parameters are considered to be uniform-
ly distributed, subsequently transformed to the original distribution,
which will be used in the model. Model simulation is performed based
on a selection of parameters randomly sampled from the previously de-
fined grid. Next, a single parameter is randomly selected and modified
by a fix factor A, and a second simulation is performed. A is a value in
{1/(p—1),....,1—1/(p— 1)}, but a more economical design is suggested
with A= p/[2(p — 1)]. The model is evaluated for r trajectories within
the parameter space. The starting point of a trajectory is selected ran-
domly. For each trajectory, every single parameter is changed separate-
ly, whereas the new point of this trajectory is an element of the
parameter space (Speckaet al.,, 2015). Morris proposed a measure called
elementary effects EE,(x;) based on calculating for each input X=
(X1, ....Xp) a number of incremental ratios (Eq. 2) from which basic sta-
tistics are computed to derive sensitivity information.

VXt eon X+ A Xn) =Y (X1, oo, Xy vy Xn)

EE,(x;) = A

(2)

This procedure is repeated r times, which is equal to the sampling
number, providing r elementary effects for each parameter. The cost of
running the screening test is based on the following relation r(n+1).
The method can distinguish between factors with negligible effects,
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linear and additive effects, and factors with non-linear or interaction ef-
fects. For each elementary effect EE,(x;) two sensitivity measures are
computed: 1, which assesses the overall influence of the factor on the
output, and ¢, which estimates the non-linear effect and/or the interac-
tion effect with other factors. To classify parameter sensitivity, g values
must always be considered together with ovalues. Campolongo et al.
(2007) suggested the use of mean of the absolute elementary effects
1i; as to avoid cancelling of positive and negative effects. In general, Mor-
ris proposed a method, which is particularly well-suited when the num-
ber of uncertain factors is high and/or the model is expensive to
compute.

In our case study, the parameter ranking based on Morris method
was applied as first step of sensitivity analysis. The number of
realisations r was set to 10 and number of levels p to 4. This settings
has been reported to be optimal for the Morris method (Ciric et al.,
2012; Campolongo et al., 2007).

3.2.2. Regression-based methods

Regression-based sensitivity analysis is performed on probabilis-
tic simulation outputs, in order to calculate regression coefficients.
The space of the input factors is sampled via the Monte Carlo method
and a linear regression model is built from the model output values.
The standard regression coefficient (f3;) quantifies the contribution
of the variance of each input factor to the overall output variance
and is more attractive than local derivatives as it offers a measure
of the effect of each given factor on the output, which is averaged
over a sample of possible values, as opposed to being computed at
the fixed point. Hence 3 is a global sensitivity measure (Hall et al.,
2009). 3; values can be used to verify linear model when the following
relation holds: 3_;32 = 1.

The standardised regression coefficient is derived from Eq. 3:

i = ("i)fb.- 3)

Oy

where 0, is the standard deviation of the the input, ¢, is the stan-
dard deviation of the output, and b; is the estimate of the regression
coefficient.

[3 can be derived to show the percentage of influence of the param-
eter on the output's variation (Hall et al., 2009).

The regression method complemented by the coefficient of determi-
nation (denoted by R?) can be used to indicate whether linearity as-
sumption for the model is appropriate. R* is interpreted as the
proportion of the model variance explained by the regression model.
R? can take a positive number between (0, 1).

Calculated according to Eq. 4, it can be used for instance to identify
non-monotonic relationships between input and output.

N + 2
RZ — Z (Yi _nu'Y} 4
Y (Yi—ny)* @

where N is the number of simulations, Y; is the simulation results, Y;*
is the Y; derived from regression model, and pty is the mean of the output
Y.

3.2.3. EFAST

Extended Fourier Amplitude Sensitivity Test (EFAST) (A. Saltelli
et al.,, 1999) is a variance-based global sensitivity analysis method,
which computes both first-order (S;) (Eq. 5) and total sensitivity
indices (TS;) (Eq. 6). The S; measures the main (first order) effect
of each individual or a group of inputs on the model output, while
Total Sensitivity Index (TS;) measures all higher order effects

(i.e., considering interactions) that can be attributed to that
parameter.

V. (E ;
5 ValBe ) )
V()
where S; is the first order sensitivity index,Vy; is the variance of out-
put due to parameter x;, V() is the total variance of output y, and E, _; is
the expectation value.

TSi=3_ S (6)
ki

where T5; is the total sensitivity index, #i represents all of the sets
containing index i.

For assessing model linearity, all first order sensitivity indices should
follow the relation }_;S; = 1. The EFAST method is based on mono-
dimensional decomposition of the model along the search curve in the
n-dimensional parameter space. The search curve is defined by a set of
parametric equations. The range of variation in EFAST is explored for
all parameters simultaneously.

EFAST is independent of any assumptions regarding the relationship
between input parameters and outputs. It provides the fraction of the
output variance due to each input parameter. Uncertain input factors
with small first order indices but high total sensitivity indices affect
the model output mainly through interactions. Such an observation sug-
gests redundancy in the model parameterization.

4. Results and discussion
4.1. Probabilistic analysis

4.1.1. Ecological exposure assessment

Accumulation of 2,3,7,8-TCDD and PCB 126 in biota soft tissue were
simulated over the time period 1932-1998 with a time step of 100 days.
Mean concentrations and 5th and 95th percentile confidence interval
are shown in Fig. 3. Curve evolution is specific for the contaminant in
question. Accumulated PCB 126 reaches different levels in different spe-
cies but the concentration trend is similar for all four species. The same
observation can be made for 2,3,7,8-TCDD: all species share similar in-
ternal concentration trend, however they differ in the level of accumu-
lated chemical.

Two concentration peaks are observed for PCB 126 in all reported
species, the first high peak in 1935 and the second, smaller one in
1952. After the second peak the concentration decreases rapidly until
1960s, and steadily continues to decline for the rest of the simulated pe-
riod until 1998 (Table 1).

Mean 2,3,7,8-TCDD concentration reaches its maximum in the early
1940's, reaching a plateau lasting until early 1950s, when a sudden de-
crease can be observed continuing until early 1960s. Afterwards con-
centration is maintained at the same level, and starts building up
slowly from mid-1970s until 1998 (Table 1). Overall, PCB 126 accumu-
lates in organisms to higher concentrations than 2,3,7,8-TCDD (Table 1).
Estimated whole body mean concentration of 2,3,7,8-TCDD and PCB 126
is higher for invertebrates in Tapes philippinarum (clam) comparing to
Carcinus mediterraneus (green crab), and, among fishes, concentration
in Chelon labrosus (mullet) is higher than in Zosterisessor ophiocephalus
(goby) (Fig. 3).

Accumulation of PCB126 is burdened with lower uncertainty than
uncertainty on accumulated 2,3,7,8-TCDD. Confidence interval in the
case of PCB126, after reaching the second concentration peak, tends to
diminish towards the end of the simulation, while uncertainty on accu-
mulated 2,3,7,8-TCDD after mid-1970’s shows growth when ap-
proaching 1998. In general, uncertainty varies along the simulated
concentration and follows the same behaviour. Difference between un-
certainty ranges (95th-5th percentile) are always between 2 and 3 x
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Fig. 3. Simulated concentration of PCB126 (mg/kg fw) and 2,3,7,8-TCDD (mg/kg fw) including all routes of exposure and uncertainty ranges of internal concentration (95th-5th %ile
interval) in: Tapes philippinarum, Carcinus mediterraneus, Chelon labrosus, and Zosterisessor ophiocephalus, over period 1932-1998.

the mean value and invariable between species when all routes of expo-
sure are considered.

4.1.2. Human exposure assessment

Fig. 4 shows uncertainty on 2,3,7,8-TCDD and PCB 126 concentration
in man's blood. PCB126 concentration in blood reaches two distinctive
peaks in early 1930s, right after person's birth, and in early 1950s
(Fig. 4). The former is roughly twice higher than the latter one.
PCB126 concentration decreases as simulation approaches the end.

Amount of 2,3,7,8-TCDD in blood slowly increases arriving to a max-
imum simulated value of 1.3 x 10~7 (mg/L) in 1950s. On the contrary,

2,3,7,8-TCDD accumulates in blood in higher concentration than PCB
126 at the final time of the simulation. In fact, Ruiz et al. (2014) noted
that the concentrations of 2,3,7,8-TCDD in serum increases with age
due to higher environmental dioxin levels in past exposure, the number
of years of past exposure, and slower elimination among older persons.
Results reported by Giubilato et al. (2016) on 2,3,7,8-TCDD levels in
blood among 18 age groups are in accordance with Ruiz observations.
Similarly to results from ecological exposure assessment, PCB 126 have
tendency to accumulate to greater level than 2,3,7,8-TCDD (Table 2).
By comparing concentration trends in biota and environmental
(Figs. 3 and 5) one can arrive to the conclusion that temporal evolution
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Table 1
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Mean concentration and lower and upper confidence intervals for PCB 126 and 2,3,7,8-TCDD at maximum concentration predicted in 1935 and 1940 and concentrations for both chemicals

simulated in 1998.

PCB 126 2,3,7,8-TCDD
(mg/kg fw) (mg/kg fw)
Deterministic PCB126 Deterministic 2,3,7,8-TCDD Mean (5th#; Mean (5th; Measured PCB126 Measured 2,3,7,8-TCDD
Species (mg/kg fw) (mg/kg fw) 95th#) 95th) (mg/kg fw) (mg/kg fw)
Carcinus 5.26E 05 1.66E — 07 52E 05 3.5E 07 1.62E — 05 1.01E-07
mediterraneus (1.7E—05; (9.6E— 08;
1.1E-04) 7.1E-07)
Chelon labrosus 3.65E 05 5.27E 08 6.8E 05 1.6E - 07 5.79E — 05 6.72E - 07
(1.5E-04; (3.4E—07;
2.0E—04) 1.3E - 06)
Tapes philippinarum  5.67E — 05 3.90E — 07 74E 05 3.6E- 07 230E - 06 1.40E - 08
(1.0E - 05; (2.6E - 08;
2.8E-06) 2.8E-09)
Zosterisessor 6.78E — 06 6.42E — 09 24E 05 7.3E - 08 2.26E 05 8.58E 08
ophiocephalus (1.7E—05; (9.6E - 08;
1.1E-04) 7.1E-07)

of internal concentration in aquatic organism is shaped mainly by the
chemical concentration in exposure media, albeit more by concentra-
tion of contaminants in sediments than in water (Table S1, Fig.
51—S53). We observed huge drop in accumulated concentration over
simulation period in aquatic species and consequently in human
blood, with regard to concentration calculated when all food web bioac-
cumulation routes are active (2,3,7,8-TCDD down by 98% and PCB126 by
94%). Furthermore, exposure concentration in diet (seafood) affects
computed temporal variation of concentration levels of the contami-
nants in blood (Fig. S3).

Cross-correlation function (CCF) is used to show potential influence
of the environmental concentration time series on the concentration in
blood (Fig. 5, right pane). In order to apply cross-correlation function,
concentrations in water and sediments were used as input time series
and computed concentration in blood as output time series. Negative
line segments correspond to events that are not correlated. Positive re-
lationship with positive time lag is characteristic for the dioxin time
trend in sediments and blood. Nevertheless, the correlation is weak,
largest value at lag —10 reaches 0.49 (Fig. 5). Concentration of 2,3,7,8-
TCDD in water poorly correlates with concentration in blood too. It
weakly correlates at lag —10 (0.24), but mostly lack of relationship is
predominant with highest negative values at lag 10 (—0.78). Interest-
ingly, it takes roughly 15 years for 2,3,7,8-TCDD to reach peak concen-
tration in blood after the occurrence of the environmental peak
exposure.

Simulated PCB126 concentration response is immediate with re-
spect to concentration in water and sediments. This is noticeable by pro-
nounced strong positive correlation over simulation period between
both environmental concentration time trends and concertation com-
puted in blood. High peak 0.93 points out strong correlation and it

1.6E-07
1.2E-07

8.0E-08

Conc. mgiL

4.0E-08

0.0E+00

1930 1950 1970 1990

+ 2,3,7,8-TCDD,Blood Mean -« 2,3,7,8-TCDD,Blood 5%
« 2,3,7,8-TCDD,Blood 95%

occurrence and lag —2.0 signifies that PCB's concentration in water
and sediments slightly leads concentration in blood.

Several studies inform about environmental concentrations as a crit-
ical source of uncertainty in modelling bioaccumulation in aquatic food
webs (De Laender et al., 2010; Ciavatta et al., 2009; Nfon and Cousins,
2007). It is also well recognised that human dietary exposure concen-
tration together with information on food consumption are one of the
most important sources of variability and uncertainty in dietary expo-
sure assessment (Kettler et al., 2015; Kennedy and Hart, 2009). We
stress that uncertainties in our reconstructed historical concentration
trends are high and remain unquantified. Details on measurements of
environmental input concentration and the method applied to calculate
historical exposure concentration in water is described by Giubilato
et al, (2016).

4.2. Sensitivity analysis

In order to account for all important model parameters and their ef-
fects, sensitivity analysis was performed as a sequence of methods, as il-
lustrated in Paragraph 2.4. For the sake of simplicity, the presented
results were narrowed down to show most influential parameters
only with regard to 2,3,7,8-TCDD and PCB 126 concentration in man's
blood as model outputs.

4.2.1. Results of Morris method

The model was run for 24,091 days. 1790 model evaluations were
run including 156 parameters in the analysis of PCB 126 and 2,3,7,8-
TCDD in blood. Results presented in Fig. 6 allowed to screen parameters
for the most influential ones observed in 1998 (that is 24,091st day of
the simulation). The results were used to reduce number of parameters
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Fig. 4. Simulated concentration of PCB126 (mg/L) and 2,3,7,8-TCDD (mg/L) and uncertainty ranges of internal concentration (95th-5th percentile interval) in man's blood over period

1932-1998.



A. Radomyski et al. / Science of the Total Environment 569-570 (2016) 1635-1649 1643

Table 2

Mean concentration and lower and upper confidence intervals for PCB 126 and 2,3,7,8-
TCDD in human blood at maximum concetration predicted in 1935 and 1954 respectively,
and concentrations for both chemicals simulated in 1998.

Simulated concentrations of

Simulated concentrations of 2,3,7,8-TCDD in blood

PCB126 in blood (mg/L) (mg/L)

Year 1935 1998 1954 1998
Mean 12E- 05 2.0E- 07 6.5E- 08 50E- 08
5th 49E - 06 S.0E- 08 1.7E - 08 12E- 08
95th% 22E- 05 39E- 07 13E- 07 1.0E- 07

to be included in further sensitivity analysis steps. Parameters with
(mu*) higher than 2.0 x 10~ % and o; (sigma) higher than 1.0 x 1078
were considered important for calculating concentration of 2,3,7,8-
TCDD in blood. Factors deemed as significant for modelling PCB 126 in
blood were restricted to those characterised by 1 higher 5.0 x 10~
and with o higher than 7.0 x 108, Regardless of the considered com-
pound, chemical metabolic half-life and man's body weight were
found to be the most important parameters. There are differences in
the two sets of influential parameters, for instance tissue-blood parti-
tion coefficient for adipose for 2,3,7,8-TCDD was noted as important
but not for PCB 126. On the other hand, lipid content in zooplankton
and phytoplankton seems to be more important in case of PCB 126
than for 2,3,7,8-TCDD. Overall, results of the Morris screening method
imply that parameters used in ‘Invertebrates’ bioaccumulation model
for Tapes philippinarum (lipid fraction, food assimilation efficiency,
water-layer diffusion resistance for uptake of chemicals from food, met-
abolic half-life of chemicals, allometric rate exponent, food transport co-
efficient) are predominant among influential parameters and matter
most in calculating concentration in blood for both contaminants in
question. Parameters identified as important in the Morris methods
(Fig. 6) were used in further steps of the sensitivity analysis.

4.2.2. Results of regression-based analysis

Regression-based analysis to assess influence of uncertain input fac-
tors on model output variance was performed using Monte Carlo sam-
pling scheme by drawing 2000 samples. Correlations between 4
uncertain input parameters and probabilistically simulated 2,3,7,8-
TCDD and PCB 126 concentration in man's blood are visualised on
scatterplots (Fig. 7). Parameters included in scatterplots were selected
for each contaminant based on the highest mu* and sigma scores indi-
cated in the Morris method. Examination of scatter plots reveals various
patterns between selected input parameters and model output, hence
informing about various relationship. Scatter plots reveal metabolic
half-lives and lipid content in Manila clam to be positively correlated
with computed output, and negative correlation in case of variability
in bodyweight and liver-blood partition coefficient with concentration
of contaminants in blood. The standardised regression coefficient 37,
decomposed according to 10 input factors, captures 73% of the model
output variance in case of computed 2,3,7,8-TCDD concentration in
blood (Table S2). Table $3 shows individual 37 values for 12 input pa-
rameters accounting for 71% of variation in computed PCB 126 concen-
tration in blood. The quality of regression model is assessed by the R*
which for both computed chemicals in blood is above 0.7, indicating
that the linear regression fits well model output and that an appreciable
fraction of output variance can be apportioned to linear component of
the model (Manache and Melching, 2008). Nevertheless, 25% and 29%
of the variation in computed concentration of 2,3,7,8-TCDD and PCB
126, respectively, remains unexplained by the 3. Therefore, further
analysis was applied to understand the contribution of uncertain pa-
rameters to model output variance.

4.2.3. EFAST
The final step of the sensitivity analysis was performed on parame-
ters selected during the screening step. First and total sensitivity indices

(S;, TSi) representing the main effect and interactions between parame-
ters was calculated using EFAST method with number of Fourier coeffi-
cients set to 4, and sampling size 1000.

4.2.3.1. 2,3,7,8-TCDD in blood. Sum of first order sensitivity indices (S;)
explains 76% of the model output variance and implies that remaining
24%is due to higher order interactions taking place among the uncertain
factors. Two parameters with the highest §;, metabolic half-life of
2,3,7,8-TCDD and variability in the bodyweight, account for 50% of the
variation in the computed 2,3,7,8-TCDD concentration in blood.

The total sensitivity indices (T5;) inform that the most important pa-
rameter for computing 2,3,7,8-TCDD concentration in blood is its meta-
bolic half-life, which is used as an input parameter to ‘Invertebrate’
bioaccumulation model, and turned out to be responsible for 47% of
the output variance. The second most important parameter is the
inter-individual variability of the body weight, accounting for 24% of
output's variation (Table 52). TS; values computed for metabolic half-
life and variability in body weight are respectively 15% and 6% higher
than §; indices, indicating small interaction among the parameters. All
global SA methods consistently show metabolic half-life of 2,3,7,8-
TCDD and variability in the bodyweight as the most influential parame-
ters for computing 2,3,7,8-TCDD concentration in blood.

The time evolution of the total sensitivity index for a set of parame-
ters is plotted in Fig. 8. The key relations are the decreasing index for ad-
ipose tissue-blood partitioning coefficient and the increasing index for
body weight. Also interesting is the increase in liver tissue-blood parti-
tion coefficient total sensitivity index: its importance begins to grow
only starting from 1950s. Among parameters specific to aquatic biota,
the allometric scaling parameter (kappa), used to model bioaccumula-
tion in Manila clam, shows a significant drop from the beginning of
the simulation.

Biotransformation half-lives of organic chemicals are known to af-
fect exposure estimates in aquatic food webs (Arnot et al., 2010). Meta-
bolic half-lives of 2,3,7,8-TCDD is burden with uncertainty attributable
to QSAR modelling, which was originally intended to provide screening
level predictions of the fish whole body biotransformation half-lives of
chemicals restricted to model's applicability domain (Arnot et al,
2009). In the applied PBPK model the bodyweight is expressed as a
function of age in order to allow inter-individual variability of the
bodyweight for persons of the same age (Bois et al., 2010). Variations
of the bodyweight in adulthood are assumed to be variations of the vol-
umes of the adipose tissues, possibly for that reason variability in the
body weight is responsible for more variance in computing 2,3,7,8-
TCDD concentration in blood than adipose tissue.

4.2.3.2. PCB126 in blood. The most important parameters detected by the
three computed global sensitivity indices are lipid content and fraction
of assimilated food specific to Manila clam (Table S3). §; calculated for
12 input parameters arrives at 81% of variation leaving 19% to be ex-
plained by interaction between parameters. First order effects comput-
ed for lipid content and fraction of assimilated food capture together
35% of output variance. Total effects show that 28% percent of variation
in the simulated internal concentration of PCB 126 is explained by un-
certainty in lipid content of Manila clam (Tapes philippinarum) and
22% is due to the fraction of assimilated food. It is interesting to note
that contribution of these factors to the output variance through inter-
action is weak as the difference between TS; and S; is small, respectively
8% and 7% for each of the parameter (Table S3). Estimated TS; for the top
three parameters reported in Table S2 captures 86% of the variation in
concentration of 2,3,7,8-TCDD, while 66% of variation in concentration
of PCB 126 is explained by the three most influential parameters
(Table S3). Overall, the fractions of variation in PCB 126 concentration
in blood given parameters are responsible for, are less discernible than
in the case of 2,3,7,8-TCDD.

The time evolution of total sensitivity index for the most influential
parameters for accumulation of PCB 126 in blood does not show any
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Fig. 6. Most influential parameters for calculating 2,3,7,8-TCDD concentration and PCB126 concentration in human blood PCB 126 based on Morris method.

significant changes over time, as depicted in Fig. 9, possibly due to weak
interactions between parameters. Two bumps, one in 1940s and the
other one smaller in 1960s, for several parameters (Fig. 9) seem to be re-
lated to two distinctive spikes in environmental concentration of
PCB126 in sediments and water (Fig. 5).

The calculation of respiratory and dietary uptake and elimination ki-
netics of organic chemicals in aquatic species is based on parameters re-
lated to animal physiology, such as food assimilation efficiency, and
partition of hydrophobic organic chemicals to lipid content, hence
these factors are expected to have an effect on bioaccumulation and
human exposure estimates. This is confirmed in our study of sensitive
parameters where, indeed, parameters representing lipid content and
food assimilation efficiency are the most important ones. The estimation

of PDF assigned to assimilation efficiency for Manila clam should attract
more attention then, given that it was originally estimated as a generic
factor describing efficiency of assimilation in aquatic invertebrates (and
not specifically for clam).

Overall, sensitivity analysis yielded a R? value close to 0.7, that helps
to classify model as quasilinear (Cariboni et al., 2007). S; estimated
around 80% for both chemicals implies that only a small part of output
variation can be attributed to interaction between parameters. The
fact that no particular differences between total and first order indices
exist would confirm this observation (Saltelli, 2004).

One significant factor having the potential to strongly influence
obtained results is the food intake rate for man, which for Manila
clam is the highest among the considered seafood items (Fig. 10).

Fig. 5. Left pane: Concentration of 2,3,7,8-TCDD and PCB 126 in dissolved water (mg/m?*) and human blood (mg/L); Right pane: Cross-correlograms showing influence of chemical
concentration in water on concentration in human blood. ACF is defined as autocorrelation function.
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Fig. 7. Scatter plots of concentration distribution of 2,3,7,8-TCDD (two upper rows) and PCB 126 (two bottom rows) in blood versus uncertain input parameters at simulation time 24,091 (1998).

This may be the reason why five parameters directly related to the
clam are relevant for estimating PCB 126 in man's blood and four
for estimating 2,3,7,8-TCDD. Both chemicals are highly lipophilic
(Kow,z_3‘?,3 1cop = 6.9, Kow pesi26 = 6.8). 2,3,7,8-TCDD tends to con-
centrate in lipid-rich tissues, as discussed by Diliberto et al. (2001)
and that its lipid solubility is particularly important at low doses.
However, despite high lipophilicity of PCB126, higher concentration
was found in liver than in fat due to most likely protein binding
(Lohitnavy et al., 2008). This difference between the two chemicals
could be addressed in the PBPK model by additional data collection
and parameterisation.

5. Conclusions

We demonstrated the application of MERLIN-Expo tool in studying
uncertainty and sensitivity of exposure models on a real life case
study in Venice lagoon (Giubilato et al.,, 2016), having the potential to
aid in understanding chronic historical and future dietary human expo-
sure to organic contaminants in foodstuffs. The scope of exposure as-
sessment was to provide transparency and credibility to historical
lifetime exposure assessment of a human individual and of a food
web, through application of different uncertainty and sensitivity analy-
sis tools offered by the software.
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Fig. 8. Change of total sensitivity index of 10 parameters over simulation time 1932-1998, considering as output the 2,3,7,8-TCDD concentration in blood.

Historical environmental exposure concentrations were used. The
source of past concentration are sediment cores which are known to
be a good source of information about past contamination trends of or-
ganic contaminants. The scarcity of data on historical contamination is a
drawback in our study, nevertheless it gives the idea about the general
contamination trend over several decades, which in fact agrees well
with pollution emissions in the Lagoon of Venice (contamination
peaks in 1940s and 1950s).

The general conclusion with regard to the obtained results after first
two steps of SA (i.e., application of Morris method and regression-based
analysis) is that model is quasilinear. With regard to uncertain model
parameters related to PBPK model, EFAST yielded body weight and
liver tissue-blood partition coefficient, additionally, adipose tissue-
blood partition coefficient in the case of exposure to 2,3,7,8-TCDD
were distinguished, but the indices values are low, suggesting that
other more dominant sources of uncertainty exist.

The main driver for ecological exposure to POPs resulted to be envi-
ronmental concentration, especially in sediments. After disabling the
consumption of sediments by the considered aquatic species, we
found that this exposure route is the most important one (sediment is
a part of diet items but its ingestion is modelled separately due to
water-organic carbon partitioning and organic carbon content used spe-
cifically in the sediment uptake model). Even though 2,3,7,8-TCDD con-
centration in water and sediments is not well correlated with blood
concentration, we noticed a huge decrease in biota and human blood
concentration after shutting down the sediment ingestion exposure
route.

Human exposure to POPs depends on a significant number of pa-
rameters, processes and behaviours. Results from SA are spread across
many model parameters and do not clearly identify a reduced number
of influential factors. However, for 2,3,7,8-TCDD there is still some con-
tribution from metabolic half-life used in invertebrate model (when
human body weight variability and clam lipid content are considered,

0,30
-y s B 5 = =B

0,25

0,00
1930

1940 1950 1960 1970 1980 1990 2000

this contribution goes up to almost 90%). These factors and the high
ingested quantity of seafood with major presence of clam in the daily in-
take would add up to factors strongly affecting concentration of 2,3,7,8-
TCDD in human blood. The environmental concentration of the dioxin
shows, however, very weak correlation with concentration in human
blood. PCB126 in blood, on the other hand, is noticeably more correlated
to environmental concentration both in sediments and water. Also
PCB's contribution from seafood intake is larger than that of 2,3,7,8-
TCDD. SA does not show any major driver of PCB126 concentration in
blood among model parameters. The obtained results suggest that envi-
ronmental concentrations and eating behaviours should be scrutinized
better in order to elucidate contribution of uncertainty to model outputs
and also encourage to include functionalities in MERLIN-Expo for con-
sidering uncertainty in time series inputs in UA/SA.

While ecological parameters affect the level of accumulated concen-
tration in biota, and should be better considered in order to obtain more
accurate bioaccumulation estimates, for human exposure to POPs they
do not play such an important role, what is confirmed by rather low
values of the SA measures.

Further testing of the applied models on new environmental and
human biomonitoring datasets and on an expanded set of
bioaccumulative chemicals, as well as the refinement of the selected
input data for the most sensitive parameters (through additional litera-
ture data or experimental activities) can support an improvement of the
model capability to reconstruct real bioaccumulation data.

Overall, the study allowed to conclude that MERLIN-Expo freeware
developed in 4FUN project can be effectively used in integrated
human and ecological exposure modelling. Thanks to the availability
of uncertainty and sensitivity analysis tools, MERLIN-Expo becomes a
versatile tool offering set of features for comprehensive ecological and
human exposure assessment. Considering also that MERLIN-Expo is an
open platform where new environmental, biota or human models can
be included (by following model development steps described in details

—a— Lipid fraction of invertebrate ( Tapes philippinarum)

Tissue:blood partition coefficients (PCB 126) (Liver)
—a&— Lipid fraction of invertebrate (Zooplankton)

—e— Variability in the bodyweight (Man)

Fraction of assimilated food (Tapes philippinarum)
~#—Water-layer diffusion resistance for uptake of chemicals from food
—— Metabolic half-life of chemicals (PCB126)

——— Invertebrate age at maturity (Tapes philippinarum)

Water-organic carbon partition coefficient (PCB126)
—#—Food transport coefficient (Tapes philippinarum)
—#— Allometric rate exponent (Tapes philippinarum)

Lipid fraction of invertebrate (Phytoplankton)

Fig. 9. Change of total sensitivity index of 12 parameters over simulation time 1932-1998 considering as output PCB 126 concentration in blood.
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Fig. 10. % contribution of the four selected species to the total ingested seafood by human as a function of age (years). Full list of considered animals (8 species) and spedfic human age

dependent ingestion rates can be found in Giubilato et al. (2016).

in model standard documentation), the potentialities offered by this
tool for advanced exposure assessment modelling are very promising.
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