KICKOFF MEETING -ROMA- 17 Ottobre 2016

WP 3 Ecosystem and contaminants

IAMC-CNR

Angela Cuttitta, Armeri G.M., Biondo G., Bennici C., Di Natale M., Maneiro I., Masullo T., Monastero L., Musco M., Nicosia A., Patti C., Tagliavia M., Torri M.

In collaboration with: UniPa DiSTEM, IFC-CNR

Mechanisms of toxicity in marine animals, exerted by conventional and emerging pollutants in SINs

Issues:

- ✓ Dynamic of biodiversity
- ✓ Alteration of transcriptional expression of genes in selected species associated to chemical "defensome"
- ✓ Transcriptome and epigenetic modifications in response to pollutants

In vivo, in vitro, in silico assay

Task 1 Evaluation of the status of biodiversity in Sins

The loss of biodiversity linked to marine and lagoon ecosystem represents a direct effect of pollutants present in the environment. Thus, the evaluation of biodiversity during the 4 seasons will be carried out. The three study areas will be investigated by visual census transects for nekton sampling method for benthos and plankton communities. Ecological indices: species richness and population density.

Sub Task 3.1 Early surveys, standardization of protocol for biodiversity evaluation

Sub Task 3.2 Ecological surveys during the four seasons

ASSESSMENT OF **CURRENT PATTERNS** IN THE STUDY AREAS TO IDENTIFY **BLANK POINTS**

EVALUATION OF THE STATUS OF BIODIVERISTY

ASSESSMENT OF THE **<u>NECTONIC</u>** COMPONENT

Underwater Visual Census (UVC)

HARMELIN-VIVIEN ET AL., 1985

WIDESPREAD AND ACCEPTED METHODOLOGY BY THE SCIENTIFIC COMMUNITY IN THE FRAMEWORK OF FISH POPULATION STUDIES

CHEAP;

FAST AND SIMPLE REPLICABILITY; NON-INVASIVE METHOD; POSSIBILITY TO REFER FISH COUNTS TO SURFACE (BELT TRANSECT) OR VOLUME (STATIONARY POINT) UNIT.

OBJECTIVE: COLLECT <u>ABUNDANCE</u>, <u>SIZE CLASS</u> AND <u>SPECIES RICHNESS</u> DATA OF FISH POPULATION

Belt transect

Stationary point

EVALUATION OF THE STATUS OF BIODIVERISTY

ASSESSMENT OF THE **PLANKTON** AND **BENTHIC** COMPONENT

Seasonal biodiversity among SINs and comparative analyses with control areas

Ordinance 260/2010 "Stato Corpi Idrici Superficiali" (ISPRA "Metodologie Studio Plancton Marino") Ordinance 190/2010 208/56/CE Strategies for Marine Environment

Fitoplankton:

Niskin bottle, 2 m depth Count on Utermöhl chamber

Zooplankton: Net WP2 56 μm mesh flowmeter, oblique recovery Count on Bolgorov chamber

Benthos:

Diving on hard and soft bottoms . Video tape footage and photographs, scraping and coring to identify the biotic communities

WP 3 Ecosystem and contaminants TASK 1

Task 2 Ecotoxicological and biochemical analyses *in vitro*

Ecotoxicological and biochemical investigations at molecular and cellular level in fish cell lines in order to identify biomolecular markers useful as sensors and early warning systems.

Sub Task 2.1 In vitro tests on fish cell cultures: antioxidant / pro-oxidant switch, dose-time dependent toxicity, biomarkers of oxidative stress; cell cycle modulation; cell survival/ apoptosis, markers of inflammation and angiogenesis

Sub Task 2.2 biochemical markers in marine "model" organisms: stress proteins modulated by contaminants/pollutants (metallothionein MTs, heat shock protein Hsp, HIFs), oxidative stress markers (ROS, malondialdehyde MDA, HNE, PUFAs), apoptosis - stress-related pathways

Definition of molecular sensors and concentrations for early-warning

Task 3

The use of model organisms to unveil novel toxicity mechanisms

IAMC CNR & IFC CNR

Based on critical issues recognized in the SINs, possible mechanisms involved in emergent diseases will be investigated in aquatic model systems at developmental and molecular level

Sub Task 3.1 Finding and housing of animals and pollutants
Sub Task 3.2 Animal exposure to chemicals in mesocosm
Sub Task 3.3 Animal exposure to sea water from SINs
Sub Task 3.4 Animal housing in SINs
Sub Task 3.5 Molecular analyses

Phenotypical and molecular effects of the exposure to pollutants

Gene Regulatory Networks

Development, Specification, Axes patterning Exploiting the Gene expression pattern of master regulators

Aberrant embryo development in response to elicitor

WP 3 Ecosystem and contaminants TASK 3

		Mytilus spp.	P. lividus	D. rerio	O. vulgaris	D. labrax
	BTEX		Х	Х		Х
Fluoranthene		Х		Х	Х	Х
Benzo(a)pyrene		х		Х	Х	х
Fluoranthene + Benzo(a)pyrene		х		х	Х	х
PBDE 209		Х	Х	Х	Х	
PBDE 209 +Pb/Zn		x	х	Х	x	
PAHs mix					Х	
PAHs+ Cd		Х	х		Х	
SW Augusta – F	SW Augusta – Priolo		х		х	
SW Mi	lazzo	Х	х		х	
SW Cro	otone	x	х		х	
PCB Congene				Х	Х	Х
		Х	х		Х	
	r mix	Х	Х		Х	
		Х	Х		Х	
		Х	Х		Х	
Dioxins (T	Dioxins (TCDD)				х	х
	Pb					х
	Cd					Х
Heavy metals	Hg					Methyl-Hg
incavy metals	Cr					
	Zn					
	As		Х			Х
	TiO ₂	+Cd			+Cd	
ТВТ			Х			
Total Metal mix		Х		Х	Х	Х

WP 3 Ecosystem and contaminants TASK 3

Table 1. Arsenic exposure and global DNA methylation.

		Global DNA	
Model	Arsenical	methylation	References
Human cells			
Prostate epithelial cell line RWPE-1 Prostate epithelial cell line RWPE-1 HaCaT keratinocytes	As ^{III} As ^{III} As ^{III}	Нуро Нуро Нуро	Coppin et al. 2008 Benbrahim-Tallaa et al. 2005 Reichard et al. 2007
Animal cells			
TRL 1215 rat liver epithelial cell line V79-Cl3 Chinese hamster cells	As ^{III} As ^{III}	Нуро Нуро	Zhao et al. 1997 Sciandrello et al. 2004
Animal studies			
Goldfish Fisher 344 rat 129/SvJ mice C3H mice C57BL/6J mice Homozygous Tg.AC mice	As ^{III} As ^{III} As ^{III} As ^{III} As ^{III} As ^V MMA ^V DMA ^V	Нуро Нуро Нуро Нуро Нуро Нуро	Bagnyukova et al. 2007 Uthus and Davis 2005 Chen et al. 2004 Waalkes et al. 2004 Okoji et al. 2002 Xie et al. 2004
Human subjects			
	As ^{III}	Hyper	Pilsner et al. 2007; Majumdar et al. 2010
	As ^{III}	Hypo (in skin lesion patients)	Pilsner et al. 2009

Table 2. Arsenic exposure and gene-specific (promoter) methylation status.

				Genes			
Mode	Arsenical	Dose	Time (weeks)	Hyper	Нуро	Reference	
Human cells							
UROtsa urothelial cells	As ^{III} MMA ^{III}	1 μM 50 nM	9	DBC1, FAM83A, ZSCAN12, C1QTNF6		Jensen et al. 2008	
Uroepithelial SV-HUC-1 cells Myeloma cell line U266 Lung adenocarcinoma A549 cells	As ^{III} As ^{III} As ^{III} As ^V	2, 4, 10 μM 1, 2 μM 0.08–2 μM 30–300 μM	24 or 52 0.4 0.3 0.3	DAPK P16 P53		Chai et al. 2007 Fu and Shen 2005 Mass and Wang 1997	
Animal cells							
Syrian hamster embryo cells	As ^{III} As ^V	3–10 μM 50–150 μM	0.3 0.3		c- <i>myc,</i> c-Ha-ras	Takahashi et al. 2002	
TRL 1215 rat liver epithelial cells	As ^{III}	125-500 nM	8 or 18		c-myc	Chen et al. 2001	
Animal studies					,		
C57BL/6J mice A/J mice	As ^{III} As ^V	2.6–14.6 µg/g body weight 100 ppm	18.5 74	p16, RASSF1	c-Ha-ras	Okoji et al. 2002 Cui et al. 2006a Weelkee et el. 2004	
C3H mice	As'''	85 ppm	1.4		EHO.	Waalkes et al. 2004	
Human subjects	A			DADK		01	
	As ^{III} As ^{III} As ^{III}	NA Variable [#] NA Variable ^b	NA NA NA	DAPK p53, P16 p16 RASSF1A, PRSS3		Chen et al. 2007 Chanda et al. 2006 Zhang et al. 2007b Marsit et al. 2006b	

Task 4

Gene expression pattern analysis and epigenetic modifications in model organisms

Molecular mechanisms of detoxification in selected organisms, evaluation of chromatin status, chromatin remodelling, transcriptome wide analyses, miRNA charaterization

Sub Task 4.1 mRNA expression patterns of "defensome-related genes Sub Task 4.2 Identification of Differentially Expressed miRNAs Sub Task 4.3 Identification of epigenetic status by MS-qPCR Sub Task 4.4 Chromatin condensation in selected genetic loci and chromatin remodelling Sub Task 4.5 mRNA expression analysis of genes involved in chromatin remodelling

WP 3 Ecosystem and contaminants

